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Abstract To improve healthcare quality and reduce costs,

the Affordable Care Act places hospitals at financial risk for

excessive readmissions associated with acute myocardial

infarction (AMI), heart failure (HF), and pneumonia (PN).

Although predictive analytics is increasingly looked to as a

means for measuring, comparing, and managing this risk,

many modeling tools require data inputs that are not readily

available and/or additional resources to yield actionable

information. This article demonstrates how hospitals and

clinicians can use their own structured discharge data to

create decision trees that produce highly transparent, clin-

ically relevant decision rules for better managing readmis-

sion risk associated with AMI, HF, and PN. For illustrative

purposes, basic decision trees are trained and tested using

publically available data from the California State Inpatient

Databases and an open-source statistical package. As

expected, these simple models perform less well than other

more sophisticated tools, with areas under the receiver

operating characteristic (ROC) curve (or AUC) of 0.612,

0.583, and 0.650, respectively, but achieve a lift of at least

1.5 or greater for higher-risk patients with any of the three

conditions. More importantly, they are shown to offer

substantial advantages in terms of transparency and inter-

pretability, comprehensiveness, and adaptability. By

enabling hospitals and clinicians to identify important fac-

tors associated with readmissions, target subgroups of

patients at both high and low risk, and design and imple-

ment interventions that are appropriate to the risk levels

observed, decision trees serve as an ideal application for

addressing the challenge of reducing hospital readmissions.

Key Points for Decision Makers

Given their high level of transparency and ease of

use, decision trees are well suited for supporting

hospitals and clinicians in their efforts to manage the

financial risk of excessive readmissions associated

with acute myocardial infarction, heart failure, and

pneumonia.

Decision trees can be constructed using readily

available hospital discharge data and provide

clinically relevant information to help guide

important decisions regarding which patients to

target for what types of interventions.

The usefulness of the decision rules created through

these models outweighs their limitations with respect

to predictive performance.

1 Introduction

Hospital readmissions, or the number of patients who are

readmitted to a hospital within a certain period of time after

discharge, are viewed as important indicators of the quality

and efficiency of hospital care. Since 2009, the Centers for
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Medicare and Medicaid Services (CMS) has been publicly

reporting the performance of Medicare-certified hospitals

on 30-day risk-standardized readmission measures for

acute myocardial infarction (AMI), heart failure (HF), and

pneumonia (PN) [1, 2]. Nationally, these conditions have a

high volume of index stays (more than 500,000 per con-

dition) and relatively high readmission rates (over 15 % on

average) across institutions [3], leading to a large number

of costly and potentially preventable readmissions annually

[4]. In October 2012, the Hospital Readmissions Reduction

Program established through the Affordable Care Act

authorized CMS to lower reimbursement to hospitals with

excess risk-standardized readmission rates for Medicare

patients with these conditions [5, 6].

As the systematic collection of health information

about individual patients and populations has become

more routine, predictive analytics is increasingly looked

to as a means for measuring, comparing, and managing

this risk. An array of modeling tools are available for

analyzing current and historical data in order to make

predictions about future, or otherwise unknown, events [7,

8]. While some of these tools have higher predictive

power than others, in many cases, they require data inputs

that are not readily available [9, 10]. Moreover, only a

calculated probability of a certain outcome is seen by the

end user. Further resources are then needed to analyze and

investigate the results in order to yield actionable infor-

mation. More transparent and easily understood modeling

tools may be better suited to help hospitals and clinicians

address the challenge of reducing hospital readmissions.

Decision trees, for example, create rules, or conditional

probabilities, that serve as the basis for the model’s pre-

dictions, such as ‘‘If a patient has finding A, B, or C, then

they will probably have outcome X.’’ Patient populations

are specified in a transparent manner for end users to

investigate, thus reducing evaluation and implementation

time.

This article demonstrates how hospitals and clinicians

can use their own structured discharge data to create

decision trees that produce highly transparent, clinically

relevant decision rules for better managing readmission

risk associated with AMI, HF, and PN. Similar to other

supervised learning processes [11], input data containing

both predictor (independent) and response (dependent)

variables are used to learn how to predict the value of the

response based on the predictors. The data are recursively

partitioned, enabling the formation of subgroups within a

population for which the value of the response variable is

relatively homogenous on the basis of values of the pre-

dictor variables and statistically dissimilar from other

subgroups. The resulting decision rules, summarized by a

graphical tree, can be used as a ‘‘check list’’ to support easy

implementation of the model.

2 Methods

2.1 Data Sources and Variable Computation

Convenience data from the publicly available California

State Inpatient Databases (SID) [12] of the Healthcare Cost

and Utilization Project (HCUP) [13] were used for this

demonstration. Derived from administrative data, HCUP

databases represent the largest collection of longitudinal

hospital care data in the USA. The SID contain more than

100 uniformly formatted clinical and nonclinical variables

[14] extracted from hospital discharge records for all

patients, regardless of insurer, that are routinely collected

across most hospital settings. Currently, 28 SID are avail-

able through HCUP.

SID data were purchased from the HCUP Central Dis-

tributor [15] for the years 2010 and 2011. The 2010 data

served as the decision tree training set, where known

readmissions for AMI, HF, and PN were given to the model

in order to train the decision rules. The 2011 data served as

the decision tree testing set, where only predictor values for

patients were passed to the algorithm. Because the model

was not optimized with this dataset, predictions were then

compared with observed outcomes to assess the model’s

predictive ability. Throughout the demonstration, admis-

sion leading to readmission served as the unit of

observation.

Only patients initially admitted with AMI, HF, and PN

diagnoses for general care and discharged to home were

included in the analyses. CMS classifies these patients

using International Classification of Diseases, Clinical

Modification (ICD-9-CM) codes associated with over

14,000 potential diagnoses [16]. To simplify the classifi-

cation procedure, CMS diagnosis-related group (CMS-

DRG) codes were used [17]. These codes classify hospital

cases into one of approximately 500 groups expected to

have similar hospital resource use based on ICD-9-CM

diagnoses, procedures, age, sex, discharge status, and the

presence of complications or comorbidities. Conditions

were defined by triplet DRGs, representing AMI, HF, or

PN with (1) a major complicating or comorbid condition

(MCC), (2) a complicating or comorbid condition (CC), or

(3) without an MCC or CC. Specifically, AMI was defined

by DRGs 280, 281, and 282, HF by DRGs 291, 292, and

293, and PN by DRGs 193, 194, and 195.

Discharges with readmission were classified as those

having a 30-day readmission into any (the same or other)

acute care facility within the California SID. Every quali-

fying hospital stay was counted as a separate index (start-

ing point) admission. In addition, following standard

methodology [18, 19], index admissions did not require a

prior ‘‘clean period’’ with no hospitalizations; that is, a

hospital stay could be a readmission for a prior stay and the
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index admission for a subsequent readmission. December

admissions for both 2010 and 2011 were removed because

of a lack of subsequent data to determine if a 30-day

readmission had occurred. Other exclusions included

patients who were discharged against medical advice, died

during hospitalization, or were transferred to another

facility. Table 1 shows the total number of admissions

leading to readmissions for each condition based on these

combined classification procedures.

Among the many variables available in the SID, those

representing important demographic, clinical, and health-

care utilization factors that have been previously associated

with readmission risk [20] were selected for this demon-

stration. A subset of the variables deemed too sparse to

define statistically significant partitions, such as hospital

birth or homeless indicators, were removed. Although

many of the selected variables were extracted directly from

the SID, a few were specially created or transformed in

order to facilitate the modeling process. For example,

30-day readmission was created by using the VISITLINK

and DAYSTOEVENT variables, and ICD-9-CM codes,

originally ranked in the SID per record, were transformed

into indicator variables per code per record. Use of the

Clinical Classifications Software (CCS) for ICD-9-CM

[21], developed as part of the HCUP, was also helpful for

collapsing the multitude of ICD-9-CM codes into a smaller

number of clinically meaningful categories. In order to

achieve sufficient balance between detail and size of the

data set, these codes were aggregated to the highest and

second highest multi-level CCS (MCCS).

2.2 Model Training and Testing

Model training and testing were performed in the R statis-

tical environment [22], using the standard, open-source

rpart package [23]. The algorithm was initiated with all of

the 2010 training data residing in the first node or root. An

initial split was made on the basis of the best predictor

variables, and subsequent splits were made from the

resultant child nodes until the trees reached the terminal

node where no more splits were made. Although decision

trees can be trained until each terminal node contains only a

single observation, this would create a vastly ‘‘over-fitted’’

model which begins to memorize the training data rather

than learning to generalize. Automated pruning by the

algorithm is typically incorporated. However, as this dem-

onstration was conducted for illustrative purposes only and

purposively designed to be as straightforward as possible,

each tree was arbitrarily limited to a depth of six levels, and

splits were constrained to occur only on partitions larger

than 4 % of the admissions of the group. Cross-validation

indicated that this approach was generally sufficient for

each condition. Because of these restrictions, at most 63

variables or nodes could be used to construct any one tree.

Model performance was determined by comparing the

area under the receiver operating characteristic (ROC)

curve (or AUC) and lift curves. The ROC curve illustrates

the performance of the classifier system as its discrimina-

tion (predicted risk) threshold is varied. These curves were

created by plotting the fraction of true positives out of the

total actual positives (TPR = true positive rate) versus the

fraction of false positives out of the total actual negatives

(FPR = false positive rate) at various threshold settings.

The AUC (C-statistic) aggregates performance across the

entire range of trade-offs between the TPR and FPR and

serves as the de facto standard for goodness of fit. Models

with a higher AUC have better performance, with 0.50

indicating random performance and 1.00 indicating perfect

performance. Another measure of model performance is

the lift of a subset of the population, or the ratio of the

predicted response rate for that subset to the predicted

response rate for the population. When seeking to manage

readmission risk, the population subset of interest is that

which, for any given condition, has the highest predicted

risk of being readmitted. A model is performing well if the

response within that subset is better than the average

response for the population. Since lift curves are typically

plotted and ordered by predicted risk (i.e., 0–10 % on the

curve represents the 10 % of the population predicted to be

most at risk by the model), they clearly show how different

segments are ‘‘lifted’’ above the baseline (random selec-

tion). These results are particularly meaningful to end users

who are seeking to define and investigate program outreach

populations.

Prior to creation of the final model, several trees were

built using different sets of variables and then evaluated

Table 1 Number of acute myocardial infarction, heart failure, and pneumonia admissions leading to readmission from the California State

Inpatient Databases

2010 (training) 2011 (testing)

Admissions Readmit rate (%) Admissions Readmit rate (%)

Acute myocardial infarction 10,848 20.6 10,701 19.7

Heart failure 39,682 25.5 38,409 25.2

Pneumonia 40,760 12.4 38,477 12.8
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using the 2010 data. Since decision trees inherently choose

the best variable at each node, variable selection is less

essential to the modeling process than assessing the spe-

cific clinical levels to be used. Given their hierarchical

structure, the use of broad clinical levels can result in

overlap and yield redundant information, while finer

specification may result in over-fitting or obscure general

population features. Consequently, a number of compari-

sons were conducted using DRG, MCCS level 1, MCCS

level 2, procedure class, and co-morbidities in the model

while consistently including age, gender, emergency

department use, length of stay (LOS), and counts of

chronic conditions, procedures, and diagnoses. Perfor-

mance between sets varied at most by a 3 % gain in AUC

to no gain at all, because of the inherent nature of the

algorithm. In cross-validation, the AUC varied as much as

7 %. Table 2 lists the final set of variables used, which

includes DRG and MCCS level 1 since these clinical levels

yielded the largest gain in AUC from the standard set of

variables and the least variance in cross-validation across

all conditions.

3 Results

3.1 Performance

Table 3 provides the AUC and standard error of each tree

for each condition during training and testing. The best

performing condition was PN, with a testing AUC of 0.650,

which decreased only 1.22 % from training. Conversely,

HF was the worst performing condition, with a testing

AUC of 0.583, representing a 1.85 % drop from training.

AMI had a relatively high AUC in training, but decreased

in testing by 5.56 % to an AUC of 0.612. Figure 1 illus-

trates the lift for each condition in training and testing

versus the rate of positive prediction. Again, AMI varies

the most between training and testing. For higher-risk

Table 2 Variables used to train and test acute myocardial infarction, heart failure, and pneumonia decision trees

SID data element Variables Type Description

Readmit Dichotomous Indicator of discharge leading to a

30-day readmission

DRG Diagnosis-related group Categorical 1 of 3 diagnosis-related groups for

each condition

Age Age Continuous

Female Gender Dichotomous

HCUP_ED Emergency department use Dichotomous Indicates records that have evidence

of emergency department services

reported

LOS Length of stay Continuous Length of stay as calculated by

subtracting the admission date from

the discharge date

NCHRONIC # Chronic conditions Continuous Contains the count of unique chronic

diagnoses reported on the discharge

NDX # Diagnosis Continuous Total number of diagnoses (valid and

invalid) coded on the discharge

record

NECODE # External cause of injury supplemental codes Continuous Number of International Classification

of Diseases, Clinical Modification

supplemental codes that capture the

external cause of injury on the

discharge record

NPR # Procedures Continuous Total number of International

Classification of Diseases, Clinical

Modification procedures (valid and

invalid) coded on the discharge

record

Procedures (as multi-level clinical classifications software level 1) Dichotomous Set of 16 multi-level clinical

classifications software (level 1)

Diagnosis (as multi-level clinical classifications software level 1) Dichotomous Set of 18 multi-level clinical

classifications software (level 1)

Total variables (including response) 44

HCUP Healthcare Cost and Utilization Project, SID State Inpatient Databases, # number of

576 J. P. Hilbert et al.

Author's personal copy



patients (up to 10 %), each model yields a lift of at least

1.5.

3.2 Decision Rules

Final decision trees were plotted using the training data

(Figs. 2, 3, and 4) and test data (Figs. 5, 6, and 7) to

illustrate readmission rate and the size of each final par-

tition. Yes/true values follow the left branch unless

otherwise specified. Among patients with AMI readmis-

sions, most had more than 12 diagnoses and an LOS

greater than 4 days. On the left part of the tree, which

typically depicts low rates of readmission, there was also

a group with DRG of 283 and a disease of the genito-

urinary (reproductive organs and urinary) system which

was also highly susceptible to readmission. High HF

readmission rates were found among patients less than

66 years old with a digestive disease and a cardiovascular

operation as well as among those less than 56 years old

with more than seven chronic conditions and an LOS

greater than 3 days, but no cardiovascular operation. Most

patients readmitted for PN had greater than nine diagno-

ses and either a cardiovascular operation or an LOS

greater than 8 days. Another large group at high risk for

PN readmissions had a neoplasm diagnosis, but fewer

overall diagnoses.

Table 3 Analysis of area under the receiver operating characteristic curves (AUC)

2010 (training) 2011 (testing) AUC difference (%) P value

AUC Standard error AUC Standard error

Acute myocardial infarction 0.648 0.0069 0.612 0.0071 -5.56 0.000

Heart failure 0.594 0.0034 0.583 0.0034 -1.85 0.022

Pneumonia 0.658 0.0044 0.650 0.0045 -1.22 0.202

Fig. 1 Comparison of lift

curves for decision trees for

each condition based on 2010

data (training) and 2011 data

(testing)
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4 Discussion

The results of this demonstration highlight important

advantages of using decision trees to manage hospital

readmission risk as well as potential limitations and strat-

egies for overcoming them. Among the primary benefits of

decision trees are their transparency and comprehensive-

ness. As Figs. 2, 3, 4, 5, 6 and 7 illustrate, decision trees

provide a graphical representation of all possible decisions

and consequences related to achieving subgroups of

patients at both high and low risk for readmission in a

single ‘‘big picture’’ view. By quantifying the values and

probability of each possible outcome of a decision, they

enable clinicians to make educated choices among the

various alternatives. For example, in this case, clinicians

seeking to reduce readmissions for patients initially

admitted with AMI and PN might decide to focus their

most resource-intensive interventions on patients with high

numbers of diagnoses/chronic conditions and diseases of

the genitourinary system or operations of the

cardiovascular system, respectively. For elderly patients

initially admitted with HF, they might choose to investigate

the high readmission risks associated with cardiovascular

operations or LOS and then implement interventions

designed to mitigate those risks. This latter decision is

further supported by the fact that patients with HF who did

not have a cardiovascular operation or an LOS greater than

4 days (or a genitourinary disease) were observed to be at

significantly lower risk for readmissions.

Another advantage of decision trees is that the statisti-

cally derived rules can be challenged and adapted in real-

world practice on the basis of clinical realities. This is par-

ticularly important given the way that the partitioning

algorithm handles predictor variables that have a large

number of distinct values, such as numbers of diagnoses. In

the PN tree, for example, the first split was based on \10

diagnoses. Although there is likely to be little difference in

readmissions among patients with 10 versus say nine or 11

diagnoses, the model made a hard distinction between these

groups. Likewise in the HF tree, the model split the number

Fig. 4 Pneumonia decision tree applied to California State Inpatient

Databases 2010 data (training). Nodes are labeled with their

readmission rate and relative population size (in parentheses). Yes/

true values follow the left branch unless otherwise specified. DRG

diagnosis-related group, # number of
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of diagnoses twice (first at 12, then at 18), creating a partition

of patients having 12–17 diagnoses, which could have led to

over-fitting. Indeed, in training, this partition had a read-

mission rate of 28.2 % (1.4 % of HF patients), which was

only 2.7 % larger than the rate for the population. However,

in testing, this same rule yielded a partition with a read-

mission rate of 32.9 % (1.7 % of HF patients), which is

7.7 % higher than the rate for the population. This potential

disadvantage of decision trees can be remedied by assigning

specific values that partition the predictor variables into a

discrete set of intervals or by simply ignoring lower-level

splits at the point of care when they offer no clinical value.

Although any proposed changes to the trees would require

validation by a modeling expert, the opportunity for clini-

cians to use these models as a ‘‘checklist’’ for decision

making and to provide input on model refinements can

enhance their control over desired clinical outcomes in ways

that are not possible with other algorithms.

Additionally, unlike many predictive models currently

on the market, the method illustrated here does not require

relaying information to a vendor or creating new data

infrastructures. Because the data and tools are easily or

already available to hospitals, no significant investment is

needed to test its application. Furthermore, the transpar-

ency of the model allows more resources to be allocated to

exploration of the underlying causes of readmissions and

interventions most likely to prevent them as opposed to

interpretation and application of the results.

Given that the decision trees in this demonstration were

purposively constructed in the most basic way possible,

using only 1 year of training data, incorporating common

variables available in the SID, and setting a priori limits on

tree size, it is not surprising that their overall predictive

power and consistency may not compare favorably to other

available models. By leveraging more data about an indi-

vidual or population and constructing trees involving a

larger number of nodes, greater predictive performance is

likely to result. Although more complex trees may lead to

over-fitting and poor generalizability, these limitations can

be addressed through automated pruning or more

Fig. 7 Pneumonia decision tree applied to California State Inpatient

Databases 2011 data (testing). Nodes are labeled with their readmis-

sion rate and relative population size (in parentheses). Yes/true values

follow the left branch unless otherwise specified. DRG diagnosis-

related group, # number of
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sophisticated algorithms, such as boosted or ensemble

trees, which were not employed here. However, as these

techniques may compromise the transparency of decision

trees, the tradeoff between predictability and interpret-

ability should be carefully considered.

5 Conclusions

In the current healthcare environment, hospitals and clini-

cians must find new ways to manage financial risk, par-

ticularly the high costs associated with preventable

readmissions for AMI, HF, and PN. Among the numerous

predictive modeling tools that can be used to support these

efforts, decision trees may be the most uniquely suited to

hospital and clinician needs and constraints. These tools

can be easily constructed using readily available hospital

discharge data and, even in their most basic form, provide

easy-to-understand, clinically relevant information for

identifying important factors associated with readmissions,

targeting subgroups of patients at both high and low risk,

and designing and implementing interventions that are

appropriate to the risk levels observed.

In applications of predictive modeling where the accuracy

of a prediction is more important than the ability to explain the

reason for a decision, it may still be appropriate for less

transparent and more complex models to continue to serve as

the technique of choice. However, in order to manage read-

mission risk, hospitals and clinicians not only need to know

what is going to happen in the future, but how to take

advantage of existing information in clinically meaningful

ways. The decision tree algorithm serves as an ideal appli-

cation for addressing these unique healthcare challenges.
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